Translate

Monday, September 5, 2016

sliding windows protocol:A Protocol Using Go Back N



3.4.2 A Protocol Using Go Back N

Until now we have made the tacit assumption that the transmission time required for a frame to arrive at the receiver plus the transmission time for the acknowledgement to come back is negligible. Sometimes this assumption is clearly false. In these situations the long round-trip time can have important implications for the efficiency of the bandwidth utilization. As an example, consider a 50-kbps satellite channel with a 500-msec round-trip propagation delay. Let us imagine trying to use protocol 4 to send 1000-bit frames via the satellite. At t = 0 the sender starts sending the first frame. At t = 20 msec the frame has been completely sent. Not until t = 270 msec has the frame fully arrived at the receiver, and not until t = 520 msec has the acknowledgement arrived back at the sender, under the best of circumstances (no waiting in the receiver and a short acknowledgement frame). This means that the sender was blocked during 500/520 or 96 percent of the time. In other words, only 4 percent of the available bandwidth was used. Clearly, the combination of a long transit time, high bandwidth, and short frame length is disastrous in terms of efficiency.
The problem described above can be viewed as a consequence of the rule requiring a sender to wait for an acknowledgement before sending another frame. If we relax that restriction, much better efficiency can be achieved. Basically, the solution lies in allowing the sender to transmit up to w frames before blocking, instead of just 1. With an appropriate choice of w the sender will be able to continuously transmit frames for a time equal to the round-trip transit time without filling up the window. In the example above, w should be at least 26. The sender begins sending frame 0 as before. By the time it has finished sending 26 frames, at t = 520, the acknowledgement for frame 0 will have just arrived. Thereafter, acknowledgements arrive every 20 msec, so the sender always gets permission to continue just when it needs it. At all times, 25 or 26 unacknowledged frames are outstanding. Put in other terms, the sender's maximum window size is 26.
The need for a large window on the sending side occurs whenever the product of bandwidth x round-trip-delay is large. If the bandwidth is high, even for a moderate delay, the sender will exhaust its window quickly unless it has a large window. If the delay is high (e.g., on a geostationary satellite channel), the sender will exhaust its window even for a moderate bandwidth. The product of these two factors basically tells what the capacity of the pipe is, and the sender needs the ability to fill it without stopping in order to operate at peak efficiency.
This technique is known as pipelining. If the channel capacity is b bits/sec, the frame size l bits, and the round-trip propagation time R sec, the time required to transmit a single frame is l/b sec. After the last bit of a data frame has been sent, there is a delay of R/2 before that bit arrives at the receiver and another delay of at least R/2 for the acknowledgement to come back, for a total delay of R. In stop-and-wait the line is busy for l/band idle for R, giving

If l < bR, the efficiency will be less than 50 percent. Since there is always a nonzero delay for the acknowledgement to propagate back, pipelining can, in principle, be used to keep the line busy during this interval, but if the interval is small, the additional complexity is not worth the trouble.
Pipelining frames over an unreliable communication channel raises some serious issues. First, what happens if a frame in the middle of a long stream is damaged or lost? Large numbers of succeeding frames will arrive at the receiver before the sender even finds out that anything is wrong. When a damaged frame arrives at the receiver, it obviously should be discarded, but what should the receiver do with all the correct frames following it? Remember that the receiving data link layer is obligated to hand packets to the network layer in sequence. In Fig. 3-16 we see the effects of pipelining on error recovery. We will now examine it in some detail.
Figure 3-16. Pipelining and error recovery. Effect of an error when (a) receiver's window size is 1 and (b) receiver's window size is large.
Two basic approaches are available for dealing with errors in the presence of pipelining. One way, called go back n, is for the receiver simply to discard all subsequent frames, sending no acknowledgements for the discarded frames. This strategy corresponds to a receive window of size 1. In other words, the data link layer refuses to accept any frame except the next one it must give to the network layer. If the sender's window fills up before the timer runs out, the pipeline will begin to empty. Eventually, the sender will time out and retransmit all unacknowledged frames in order, starting with the damaged or lost one. This approach can waste a lot of bandwidth if the error rate is high.
In Fig. 3-16(a) we see go back n for the case in which the receiver's window is large. Frames 0 and 1 are correctly received and acknowledged. Frame 2, however, is damaged or lost. The sender, unaware of this problem, continues to send frames until the timer for frame 2 expires. Then it backs up to frame 2 and starts all over with it, sending 2, 3, 4, etc. all over again.
The other general strategy for handling errors when frames are pipelined is called selective repeat. When it is used, a bad frame that is received is discarded, but good frames received after it are buffered. When the sender times out, only the oldest unacknowledged frame is retransmitted. If that frame arrives correctly, the receiver can deliver to the network layer, in sequence, all the frames it has buffered. Selective repeat is often combined with having the receiver send a negative acknowledgement (NAK) when it detects an error, for example, when it receives a checksum error or a frame out of sequence. NAKs stimulate retransmission before the corresponding timer expires and thus improve performance.
In Fig. 3-16(b), frames 0 and 1 are again correctly received and acknowledged and frame 2 is lost. When frame 3 arrives at the receiver, the data link layer there notices that is has missed a frame, so it sends back a NAK for 2 but buffers 3. When frames 4 and 5 arrive, they, too, are buffered by the data link layer instead of being passed to the network layer. Eventually, the NAK 2 gets back to the sender, which immediately resends frame 2. When that arrives, the data link layer now has 2, 3, 4, and 5 and can pass all of them to the network layer in the correct order. It can also acknowledge all frames up to and including 5, as shown in the figure. If the NAK should get lost, eventually the sender will time out for frame 2 and send it (and only it) of its own accord, but that may be a quite a while later. In effect, the NAK speeds up the retransmission of one specific frame.
Selective repeat corresponds to a receiver window larger than 1. Any frame within the window may be accepted and buffered until all the preceding ones have been passed to the network layer. This approach can require large amounts of data link layer memory if the window is large.
These two alternative approaches are trade-offs between bandwidth and data link layer buffer space. Depending on which resource is scarcer, one or the other can be used. Figure 3-17 shows a pipelining protocol in which the receiving data link layer only accepts frames in order; frames following an error are discarded. In this protocol, for the first time we have dropped the assumption that the network layer always has an infinite supply of packets to send. When the network layer has a packet it wants to send, it can cause a network_layer_ready event to happen. However, to enforce the flow control rule of no more than MAX_SEQ unacknowledged frames outstanding at any time, the data link layer must be able to keep the network layer from bothering it with more work. The library procedures enable_network_layer and disable_network_layer do this job.
Figure 3-17. A sliding window protocol using go back n.
 
 
 
Note that a maximum of MAX_SEQ frames and not MAX_SEQ + 1 frames may be outstanding at any instant, even though there are MAX_SEQ + 1 distinct sequence numbers: 0, 1, 2, ..., MAX_SEQ. To see why this restriction is required, consider the following scenario with MAX_SEQ = 7.
  1. The sender sends frames 0 through 7.
  2. A piggybacked acknowledgement for frame 7 eventually comes back to the sender.
  3. The sender sends another eight frames, again with sequence numbers 0 through 7.
  4. Now another piggybacked acknowledgement for frame 7 comes in.
The question is this: Did all eight frames belonging to the second batch arrive successfully, or did all eight get lost (counting discards following an error as lost)? In both cases the receiver would be sending frame 7 as the acknowledgement. The sender has no way of telling. For this reason the maximum number of outstanding frames must be restricted to MAX_SEQ.
Although protocol 5 does not buffer the frames arriving after an error, it does not escape the problem of buffering altogether. Since a sender may have to retransmit all the unacknowledged frames at a future time, it must hang on to all transmitted frames until it knows for sure that they have been accepted by the receiver. When an acknowledgement comes in for frame n, frames n - 1, n - 2, and so on are also automatically acknowledged. This property is especially important when some of the previous acknowledgement-bearing frames were lost or garbled. Whenever any acknowledgement comes in, the data link layer checks to see if any buffers can now be released. If buffers can be released (i.e., there is some room available in the window), a previously blocked network layer can now be allowed to cause more network_layer_ready events.
For this protocol, we assume that there is always reverse traffic on which to piggyback acknowledgements. If there is not, no acknowledgements can be sent. Protocol 4 does not need this assumption since it sends back one frame every time it receives a frame, even if it has just already sent that frame. In the next protocol we will solve the problem of one-way traffic in an elegant way.
Because protocol 5 has multiple outstanding frames, it logically needs multiple timers, one per outstanding frame. Each frame times out independently of all the other ones. All of these timers can easily be simulated in software, using a single hardware clock that causes interrupts periodically. The pending timeouts form a linked list, with each node of the list telling the number of clock ticks until the timer expires, the frame being timed, and a pointer to the next node.
As an illustration of how the timers could be implemented, consider the example of Fig. 3-18(a). Assume that the clock ticks once every 100 msec. Initially, the real time is 10:00:00.0; three timeouts are pending, at 10:00:00.5, 10:00:01.3, and 10:00:01.9. Every time the hardware clock ticks, the real time is updated and the tick counter at the head of the list is decremented. When the tick counter becomes zero, a timeout is caused and the node is removed from the list, as shown in Fig. 3-18(b). Although this organization requires the list to be scanned when start_timer or stop_timer is called, it does not require much work per tick. In protocol 5, both of these routines have been given a parameter, indicating which frame is to be timed.
Figure 3-18. Simulation of multiple timers in software.

No comments:

Post a Comment

silahkan membaca dan berkomentar