Translate

Monday, September 5, 2016

PSTN : Switching



2.5.5 PSTN Switching

From the point of view of the average telephone engineer, the phone system is divided into two principal parts: outside plant (the local loops and trunks, since they are physically outside the switching offices) and inside plant (the switches), which are inside the switching offices. We have just looked at the outside plant. Now it is time to examine the inside plant.
Two different switching techniques are used nowadays: circuit switching and packet switching. We will give a brief introduction to each of them below. Then we will go into circuit switching in detail because that is how the telephone system works.
Circuit Switching
When you or your computer places a telephone call, the switching equipment within the telephone system seeks out a physical path all the way from your telephone to the receiver's telephone. This technique is called circuit switching and is shown schematically in Fig. 2-38(a). Each of the six rectangles represents a carrier switching office (end office, toll office, etc.). In this example, each office has three incoming lines and three outgoing lines. When a call passes through a switching office, a physical connection is (conceptually) established between the line on which the call came in and one of the output lines, as shown by the dotted lines.
Figure 2-38. (a) Circuit switching. (b) Packet switching.
In the early days of the telephone, the connection was made by the operator plugging a jumper cable into the input and output sockets. In fact, a surprising little story is associated with the invention of automatic circuit switching equipment. It was invented by a 19th century Missouri undertaker named Almon B. Strowger. Shortly after the telephone was invented, when someone died, one of the survivors would call the town operator and say ''Please connect me to an undertaker.'' Unfortunately for Mr. Strowger, there were two undertakers in his town, and the other one's wife was the town telephone operator. He quickly saw that either he was going to have to invent automatic telephone switching equipment or he was going to go out of business. He chose the first option. For nearly 100 years, the circuit-switching equipment used worldwide was known as Strowger gear. (History does not record whether the now-unemployed switchboard operator got a job as an information operator, answering questions such as ''What is the phone number of an undertaker?'')
The model shown in Fig. 2-39(a) is highly simplified, of course, because parts of the physical path between the two telephones may, in fact, be microwave or fiber links onto which thousands of calls are multiplexed. Nevertheless, the basic idea is valid: once a call has been set up, a dedicated path between both ends exists and will continue to exist until the call is finished.
Figure 2-39. Timing of events in (a) circuit switching, (b) message switching, (c) packet switching.
The alternative to circuit switching is packet switching, shown in Fig. 2-38(b). With this technology, individual packets are sent as need be, with no dedicated path being set up in advance. It is up to each packet to find its way to the destination on its own.
An important property of circuit switching is the need to set up an end-to-end path before any data can be sent. The elapsed time between the end of dialing and the start of ringing can easily be 10 sec, more on long-distance or international calls. During this time interval, the telephone system is hunting for a path, as shown in Fig. 2-39(a). Note that before data transmission can even begin, the call request signal must propagate all the way to the destination and be acknowledged. For many computer applications (e.g., point-of-sale credit verification), long setup times are undesirable.
As a consequence of the reserved path between the calling parties, once the setup has been completed, the only delay for data is the propagation time for the electromagnetic signal, about 5 msec per 1000 km. Also as a consequence of the established path, there is no danger of congestion—that is, once the call has been put through, you never get busy signals. Of course, you might get one before the connection has been established due to lack of switching or trunk capacity.
Message Switching
An alternative switching strategy is message switching, illustrated in Fig. 2-39(b). When this form of switching is used, no physical path is established in advance between sender and receiver. Instead, when the sender has a block of data to be sent, it is stored in the first switching office (i.e., router) and then forwarded later, one hop at a time.
The first electromechanical telecommunication systems used message switching, namely, for telegrams. The message was punched on paper tape (off-line) at the sending office, and then read in and transmitted over a communication line to the next office along the way, where it was punched out on paper tape. An operator there tore the tape off and read it in on one of the many tape readers, one reader per outgoing trunk. Such a switching office was called a torn tape office. Paper tape is long gone and message switching is not used any more, so we will not discuss it further in this book.
Packet Switching
With message switching, there is no limit at all on block size, which means that routers (in a modern system) must have disks to buffer long blocks. It also means that a single block can tie up a router-router line for minutes, rendering message switching useless for interactive traffic. To get around these problems, packet switching was invented. Packet-switching networks place a tight upper limit on block size, allowing packets to be buffered in router main memory instead of on disk. By making sure that no user can monopolize any transmission line very long (milliseconds), packet-switching networks are well suited for handling interactive traffic. A further advantage of packet switching over message switching is shown in Fig. 2-39(b) and (c): the first packet of a multipacket message can be forwarded before the second one has fully arrived, reducing delay and improving throughput. For these reasons, computer networks are usually packet switched, occasionally circuit switched, but never message switched.
Circuit switching and packet switching differ in many respects. To start with, circuit switching requires that a circuit be set up end to end before communication begins. Packet switching does not require any advance setup. The first packet can just be sent as soon as it is available.
The result of the connection setup with circuit switching is the reservation of bandwidth all the way from the sender to the receiver. All packets follow this path. Among other properties, having all packets follow the same path means that they cannot arrive out of order. With packet switching there is no path, so different packets can follow different paths, depending on network conditions at the time they are sent. They may arrive out of order.
Packet switching is more fault tolerant than circuit switching. In fact, that is why it was invented. If a switch goes down, all of the circuits using it are terminated and no more traffic can be sent on any of them. With packet switching, packets can be routed around dead switches.
Setting up a path in advance also opens up the possibility of reserving bandwidth in advance. If bandwidth is reserved, then when a packet arrives, it can be sent out immediately over the reserved bandwidth. With packet switching, no bandwidth is reserved, so packets may have to wait their turn to be forwarded.
Having bandwidth reserved in advance means that no congestion can occur when a packet shows up (unless more packets show up than expected). On the other hand, when an attempt is made to establish a circuit, the attempt can fail due to congestion. Thus, congestion can occur at different times with circuit switching (at setup time) and packet switching (when packets are sent).
If a circuit has been reserved for a particular user and there is no traffic to send, the bandwidth of that circuit is wasted. It cannot be used for other traffic. Packet switching does not waste bandwidth and thus is more efficient from a system-wide perspective. Understanding this trade-off is crucial for comprehending the difference between circuit switching and packet switching. The trade-off is between guaranteed service and wasting resources versus not guaranteeing service and not wasting resources.
Packet switching uses store-and-forward transmission. A packet is accumulated in a router's memory, then sent on to the next router. With circuit switching, the bits just flow through the wire continuously. The store-and-forward technique adds delay.
Another difference is that circuit switching is completely transparent. The sender and receiver can use any bit rate, format, or framing method they want to. The carrier does not know or care. With packet switching, the carrier determines the basic parameters. A rough analogy is a road versus a railroad. In the former, the user determines the size, speed, and nature of the vehicle; in the latter, the carrier does. It is this transparency that allows voice, data, and fax to coexist within the phone system.
A final difference between circuit and packet switching is the charging algorithm. With circuit switching, charging has historically been based on distance and time. For mobile phones, distance usually does not play a role, except for international calls, and time plays only a minor role (e.g., a calling plan with 2000 free minutes costs more than one with 1000 free minutes and sometimes night or weekend calls are cheaper than normal). With packet switching, connect time is not an issue, but the volume of traffic sometimes is. For home users, ISPs usually charge a flat monthly rate because it is less work for them and their customers can understand this model easily, but backbone carriers charge regional networks based on the volume of their traffic. The differences are summarized in Fig. 2-40.
Figure 2-40. A comparison of circuit-switched and packet-switched networks.
Both circuit switching and packet switching are important enough that we will come back to them shortly and describe the various technologies used in detail.

No comments:

Post a Comment

silahkan membaca dan berkomentar