Translate

Monday, September 5, 2016

Guided Transmission Media



2.2 Guided Transmission Media

The purpose of the physical layer is to transport a raw bit stream from one machine to another. Various physical media can be used for the actual transmission. Each one has its own niche in terms of bandwidth, delay, cost, and ease of installation and maintenance. Media are roughly grouped into guided media, such as copper wire and fiber optics, and unguided media, such as radio and lasers through the air. We will look at all of these in the following sections.
2.2.1 Magnetic Media
One of the most common ways to transport data from one computer to another is to write them onto magnetic tape or removable media (e.g., recordable DVDs), physically transport the tape or disks to the destination machine, and read them back in again. Although this method is not as sophisticated as using a geosynchronous communication satellite, it is often more cost effective, especially for applications in which high bandwidth or cost per bit transported is the key factor.
A simple calculation will make this point clear. An industry standard Ultrium tape can hold 200 gigabytes. A box 60 x 60 x 60 cm can hold about 1000 of these tapes, for a total capacity of 200 terabytes, or 1600 terabits (1.6 petabits). A box of tapes can be delivered anywhere in the United States in 24 hours by Federal Express and other companies. The effective bandwidth of this transmission is 1600 terabits/86,400 sec, or 19 Gbps. If the destination is only an hour away by road, the bandwidth is increased to over 400 Gbps. No computer network can even approach this.
For a bank with many gigabytes of data to be backed up daily on a second machine (so the bank can continue to function even in the face of a major flood or earthquake), it is likely that no other transmission technology can even begin to approach magnetic tape for performance. Of course, networks are getting faster, but tape densities are increasing, too.
If we now look at cost, we get a similar picture. The cost of an Ultrium tape is around $40 when bought in bulk. A tape can be reused at least ten times, so the tape cost is maybe $4000 per box per usage. Add to this another $1000 for shipping (probably much less), and we have a cost of roughly $5000 to ship 200 TB. This amounts to shipping a gigabyte for under 3 cents. No network can beat that. The moral of the story is:
Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway
2.2.2 Twisted Pair
Although the bandwidth characteristics of magnetic tape are excellent, the delay characteristics are poor. Transmission time is measured in minutes or hours, not milliseconds. For many applications an on-line connection is needed. One of the oldest and still most common transmission media is twisted pair. A twisted pair consists of two insulated copper wires, typically about 1 mm thick. The wires are twisted together in a helical form, just like a DNA molecule. Twisting is done because two parallel wires constitute a fine antenna. When the wires are twisted, the waves from different twists cancel out, so the wire radiates less effectively.
The most common application of the twisted pair is the telephone system. Nearly all telephones are connected to the telephone company (telco) office by a twisted pair. Twisted pairs can run several kilometers without amplification, but for longer distances, repeaters are needed. When many twisted pairs run in parallel for a substantial distance, such as all the wires coming from an apartment building to the telephone company office, they are bundled together and encased in a protective sheath. The pairs in these bundles would interfere with one another if it were not for the twisting. In parts of the world where telephone lines run on poles above ground, it is common to see bundles several centimeters in diameter.
Twisted pairs can be used for transmitting either analog or digital signals. The bandwidth depends on the thickness of the wire and the distance traveled, but several megabits/sec can be achieved for a few kilometers in many cases. Due to their adequate performance and low cost, twisted pairs are widely used and are likely to remain so for years to come.
Twisted pair cabling comes in several varieties, two of which are important for computer networks. Category 3 twisted pairs consist of two insulated wires gently twisted together. Four such pairs are typically grouped in a plastic sheath to protect the wires and keep them together. Prior to about 1988, most office buildings had one category 3 cable running from a central wiring closet on each floor into each office. This scheme allowed up to four regular telephones or two multiline telephones in each office to connect to the telephone company equipment in the wiring closet.
Starting around 1988, the more advanced category 5 twisted pairs were introduced. They are similar to category 3 pairs, but with more twists per centimeter, which results in less crosstalk and a better-quality signal over longer distances, making them more suitable for high-speed computer communication. Up-and-coming categories are 6 and 7, which are capable of handling signals with bandwidths of 250 MHz and 600 MHz, respectively (versus a mere 16 MHz and 100 MHz for categories 3 and 5, respectively).
All of these wiring types are often referred to as UTP (Unshielded Twisted Pair), to contrast them with the bulky, expensive, shielded twisted pair cables IBM introduced in the early 1980s, but which have not proven popular outside of IBM installations. Twisted pair cabling is illustrated in Fig. 2-3.
Figure 2-3. (a) Category 3 UTP. (b) Category 5 UTP.
2.2.3 Coaxial Cable
Another common transmission medium is the coaxial cable (known to its many friends as just ''coax'' and pronounced ''co-ax''). It has better shielding than twisted pairs, so it can span longer distances at higher speeds. Two kinds of coaxial cable are widely used. One kind, 50-ohm cable, is commonly used when it is intended for digital transmission from the start. The other kind, 75-ohm cable, is commonly used for analog transmission and cable television but is becoming more important with the advent of Internet over cable. This distinction is based on historical, rather than technical, factors (e.g., early dipole antennas had an impedance of 300 ohms, and it was easy to use existing 4:1 impedance matching transformers).
A coaxial cable consists of a stiff copper wire as the core, surrounded by an insulating material. The insulator is encased by a cylindrical conductor, often as a closely-woven braided mesh. The outer conductor is covered in a protective plastic sheath. A cutaway view of a coaxial cable is shown in Fig. 2-4.
Figure 2-4. A coaxial cable.
The construction and shielding of the coaxial cable give it a good combination of high bandwidth and excellent noise immunity. The bandwidth possible depends on the cable quality, length, and signal-to-noise ratio of the data signal. Modern cables have a bandwidth of close to 1 GHz. Coaxial cables used to be widely used within the telephone system for long-distance lines but have now largely been replaced by fiber optics on long-haul routes. Coax is still widely used for cable television and metropolitan area networks, however.
2.2.4 Fiber Optics
Many people in the computer industry take enormous pride in how fast computer technology is improving. The original (1981) IBM PC ran at a clock speed of 4.77 MHz. Twenty years later, PCs could run at 2 GHz, a gain of a factor of 20 per decade. Not too bad.
In the same period, wide area data communication went from 56 kbps (the ARPANET) to 1 Gbps (modern optical communication), a gain of more than a factor of 125 per decade, while at the same time the error rate went from 10-5 per bit to almost zero.
Furthermore, single CPUs are beginning to approach physical limits, such as speed of light and heat dissipation problems. In contrast, with current fiber technology, the achievable bandwidth is certainly in excess of 50,000 Gbps (50 Tbps) and many people are looking very hard for better technologies and materials. The current practical signaling limit of about 10 Gbps is due to our inability to convert between electrical and optical signals any faster, although in the laboratory, 100 Gbps has been achieved on a single fiber.
In the race between computing and communication, communication won. The full implications of essentially infinite bandwidth (although not at zero cost) have not yet sunk in to a generation of computer scientists and engineers taught to think in terms of the low Nyquist and Shannon limits imposed by copper wire. The new conventional wisdom should be that all computers are hopelessly slow and that networks should try to avoid computation at all costs, no matter how much bandwidth that wastes. In this section we will study fiber optics to see how that transmission technology works.
An optical transmission system has three key components: the light source, the transmission medium, and the detector. Conventionally, a pulse of light indicates a 1 bit and the absence of light indicates a 0 bit. The transmission medium is an ultra-thin fiber of glass. The detector generates an electrical pulse when light falls on it. By attaching a light source to one end of an optical fiber and a detector to the other, we have a unidirectional data transmission system that accepts an electrical signal, converts and transmits it by light pulses, and then reconverts the output to an electrical signal at the receiving end.
This transmission system would leak light and be useless in practice except for an interesting principle of physics. When a light ray passes from one medium to another, for example, from fused silica to air, the ray is refracted (bent) at the silica/air boundary, as shown in Fig. 2-5(a). Here we see a light ray incident on the boundary at an angle a1 emerging at an angle b1. The amount of refraction depends on the properties of the two media (in particular, their indices of refraction). For angles of incidence above a certain critical value, the light is refracted back into the silica; none of it escapes into the air. Thus, a light ray incident at or above the critical angle is trapped inside the fiber, as shown in Fig. 2-5(b), and can propagate for many kilometers with virtually no loss.
Figure 2-5. (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles. (b) Light trapped by total internal reflection.
The sketch of Fig. 2-5(b) shows only one trapped ray, but since any light ray incident on the boundary above the critical angle will be reflected internally, many different rays will be bouncing around at different angles. Each ray is said to have a different mode, so a fiber having this property is called a multimode fiber.
However, if the fiber's diameter is reduced to a few wavelengths of light, the fiber acts like a wave guide, and the light can propagate only in a straight line, without bouncing, yielding a single-mode fiber. Single-mode fibers are more expensive but are widely used for longer distances. Currently available single-mode fibers can transmit data at 50 Gbps for 100 km without amplification. Even higher data rates have been achieved in the laboratory for shorter distances.
Transmission of Light through Fiber
Optical fibers are made of glass, which, in turn, is made from sand, an inexpensive raw material available in unlimited amounts. Glassmaking was known to the ancient Egyptians, but their glass had to be no more than 1 mm thick or the light could not shine through. Glass transparent enough to be useful for windows was developed during the Renaissance. The glass used for modern optical fibers is so transparent that if the oceans were full of it instead of water, the seabed would be as visible from the surface as the ground is from an airplane on a clear day.
The attenuation of light through glass depends on the wavelength of the light (as well as on some physical properties of the glass). For the kind of glass used in fibers, the attenuation is shown in Fig. 2-6 in decibels per linear kilometer of fiber. The attenuation in decibels is given by the formula
Figure 2-6. Attenuation of light through fiber in the infrared region.


For example, a factor of two loss gives an attenuation of 10 log10 2 = 3 dB. The figure shows the near infrared part of the spectrum, which is what is used in practice. Visible light has slightly shorter wavelengths, from 0.4 to 0.7 microns (1 micron is 10-6 meters). The true metric purist would refer to these wavelengths as 400 nm to 700 nm, but we will stick with traditional usage.
Three wavelength bands are used for optical communication. They are centered at 0.85, 1.30, and 1.55 microns, respectively. The last two have good attenuation properties (less than 5 percent loss per kilometer). The 0.85 micron band has higher attenuation, but at that wavelength the lasers and electronics can be made from the same material (gallium arsenide). All three bands are 25,000 to 30,000 GHz wide.
Light pulses sent down a fiber spread out in length as they propagate. This spreading is called chromatic dispersion. The amount of it is wavelength dependent. One way to keep these spread-out pulses from overlapping is to increase the distance between them, but this can be done only by reducing the signaling rate. Fortunately, it has been discovered that by making the pulses in a special shape related to the reciprocal of the hyperbolic cosine, nearly all the dispersion effects cancel out, and it is possible to send pulses for thousands of kilometers without appreciable shape distortion. These pulses are called solitons. A considerable amount of research is going on to take solitons out of the lab and into the field.
Fiber Cables
Fiber optic cables are similar to coax, except without the braid. Figure 2-7(a) shows a single fiber viewed from the side. At the center is the glass core through which the light propagates. In multimode fibers, the core is typically 50 microns in diameter, about the thickness of a human hair. In single-mode fibers, the core is 8 to 10 microns.
Figure 2-7. (a) Side view of a single fiber. (b) End view of a sheath with three fibers.
The core is surrounded by a glass cladding with a lower index of refraction than the core, to keep all the light in the core. Next comes a thin plastic jacket to protect the cladding. Fibers are typically grouped in bundles, protected by an outer sheath. Figure 2-7(b) shows a sheath with three fibers.
Terrestrial fiber sheaths are normally laid in the ground within a meter of the surface, where they are occasionally subject to attacks by backhoes or gophers. Near the shore, transoceanic fiber sheaths are buried in trenches by a kind of seaplow. In deep water, they just lie on the bottom, where they can be snagged by fishing trawlers or attacked by giant squid.
Fibers can be connected in three different ways. First, they can terminate in connectors and be plugged into fiber sockets. Connectors lose about 10 to 20 percent of the light, but they make it easy to reconfigure systems.
Second, they can be spliced mechanically. Mechanical splices just lay the two carefully-cut ends next to each other in a special sleeve and clamp them in place. Alignment can be improved by passing light through the junction and then making small adjustments to maximize the signal. Mechanical splices take trained personnel about 5 minutes and result in a 10 percent light loss.
Third, two pieces of fiber can be fused (melted) to form a solid connection. A fusion splice is almost as good as a single drawn fiber, but even here, a small amount of attenuation occurs.
For all three kinds of splices, reflections can occur at the point of the splice, and the reflected energy can interfere with the signal.
Two kinds of light sources are typically used to do the signaling, LEDs (Light Emitting Diodes) and semiconductor lasers. They have different properties, as shown in Fig. 2-8. They can be tuned in wavelength by inserting Fabry-Perot or Mach-Zehnder interferometers between the source and the fiber. Fabry-Perot interferometers are simple resonant cavities consisting of two parallel mirrors. The light is incident perpendicular to the mirrors. The length of the cavity selects out those wavelengths that fit inside an integral number of times. Mach-Zehnder interferometers separate the light into two beams. The two beams travel slightly different distances. They are recombined at the end and are in phase for only certain wavelengths.
Figure 2-8. A comparison of semiconductor diodes and LEDs as light sources.
The receiving end of an optical fiber consists of a photodiode, which gives off an electrical pulse when struck by light. The typical response time of a photodiode is 1 nsec, which limits data rates to about 1 Gbps. Thermal noise is also an issue, so a pulse of light must carry enough energy to be detected. By making the pulses powerful enough, the error rate can be made arbitrarily small.
Fiber Optic Networks
Fiber optics can be used for LANs as well as for long-haul transmission, although tapping into it is more complex than connecting to an Ethernet. One way around the problem is to realize that a ring network is really just a collection of point-to-point links, as shown in Fig. 2-9. The interface at each computer passes the light pulse stream through to the next link and also serves as a T junction to allow the computer to send and accept messages.
Figure 2-9. A fiber optic ring with active repeaters.
Two types of interfaces are used. A passive interface consists of two taps fused onto the main fiber. One tap has an LED or laser diode at the end of it (for transmitting), and the other has a photodiode (for receiving). The tap itself is completely passive and is thus extremely reliable because a broken LED or photodiode does not break the ring. It just takes one computer off-line.
The other interface type, shown in Fig. 2-9, is the active repeater. The incoming light is converted to an electrical signal, regenerated to full strength if it has been weakened, and retransmitted as light. The interface with the computer is an ordinary copper wire that comes into the signal regenerator. Purely optical repeaters are now being used, too. These devices do not require the optical to electrical to optical conversions, which means they can operate at extremely high bandwidths.
If an active repeater fails, the ring is broken and the network goes down. On the other hand, since the signal is regenerated at each interface, the individual computer-to-computer links can be kilometers long, with virtually no limit on the total size of the ring. The passive interfaces lose light at each junction, so the number of computers and total ring length are greatly restricted.
A ring topology is not the only way to build a LAN using fiber optics. It is also possible to have hardware broadcasting by using the passive star construction of Fig. 2-10. In this design, each interface has a fiber running from its transmitter to a silica cylinder, with the incoming fibers fused to one end of the cylinder. Similarly, fibers fused to the other end of the cylinder are run to each of the receivers. Whenever an interface emits a light pulse, it is diffused inside the passive star to illuminate all the receivers, thus achieving broadcast. In effect, the passive star combines all the incoming signals and transmits the merged result on all lines. Since the incoming energy is divided among all the outgoing lines, the number of nodes in the network is limited by the sensitivity of the photodiodes.
Figure 2-10. A passive star connection in a fiber optics network.
Comparison of Fiber Optics and Copper Wire
It is instructive to compare fiber to copper. Fiber has many advantages. To start with, it can handle much higher bandwidths than copper. This alone would require its use in high-end networks. Due to the low attenuation, repeaters are needed only about every 50 km on long lines, versus about every 5 km for copper, a substantial cost saving. Fiber also has the advantage of not being affected by power surges, electromagnetic interference, or power failures. Nor is it affected by corrosive chemicals in the air, making it ideal for harsh factory environments.
Oddly enough, telephone companies like fiber for a different reason: it is thin and lightweight. Many existing cable ducts are completely full, so there is no room to add new capacity. Removing all the copper and replacing it by fiber empties the ducts, and the copper has excellent resale value to copper refiners who see it as very high grade ore. Also, fiber is much lighter than copper. One thousand twisted pairs 1 km long weigh 8000 kg. Two fibers have more capacity and weigh only 100 kg, which greatly reduces the need for expensive mechanical support systems that must be maintained. For new routes, fiber wins hands down due to its much lower installation cost.
Finally, fibers do not leak light and are quite difficult to tap. These properties gives fiber excellent security against potential wiretappers.
On the downside, fiber is a less familiar technology requiring skills not all engineers have, and fibers can be damaged easily by being bent too much. Since optical transmission is inherently unidirectional, two-way communication requires either two fibers or two frequency bands on one fiber. Finally, fiber interfaces cost more than electrical interfaces. Nevertheless, the future of all fixed data communication for distances of more than a few meters is clearly with fiber. For a discussion of all aspects of fiber optics and their networks, see (Hecht, 2001).

No comments:

Post a Comment

silahkan membaca dan berkomentar